alternative energy tutorials image
Loading Search Box
photovoltaic array image

Connecting Solar Panels Together




Please share/bookmark with:

How to Connect Solar Panels Together

solar powerConnecting solar panels together is a simple and effective way of increasing your solar power capabilities. Going green is a great idea, and as the sun is our ultimate power source, it makes sense to utilize this energy to power our homes. As solar power becomes more accessible, more and more homeowners are buying photovoltaic solar panels.

However, these photovoltaic solar panels can be very costly so buying them over time helps to spread the cost. But the problem then becomes how do we connect these extra solar panels together to increase the voltage and power output of what’s already there.

The trick here when connecting solar panels together is to choose a connection method that is going to give you the most energy efficient configuration for your particular requirements. Connecting solar panels together can seem like a daunting task when you first start to look at how it should be done, but connecting multiple solar panels together is not that hard with a little thought. Wiring solar panels together in either parallel or series combinations to make larger arrays is an often overlooked, yet completely essential part of any well designed solar power system.

There are three basic but very different ways of connecting solar panels together and each connection method is designed for a specific purpose. For example, to produce more output voltage or to produce more current. Solar panels can be wired in a series or parallel combination to increase the voltage or amperage respectively, or they can be wired together in both series and parallel to increase both the voltage and current output producing a higher wattage array.

Whether you are connecting two solar panels more more, as long as you understand the basic principles of how connecting multiple solar panels together increases power and how each of these wiring methods works, you can easily decide on how to wire your own panels together. After all connecting solar panels together correctly can greatly improve the efficiency of your solar system.

Connecting Solar Panels in Series

The first method we will look at for connecting solar panels together is what’s known as “Series Wiring“. Connecting solar panels together in series is used to increase the total system voltage. Solar panels in series are generally used when you have a grid connected inverter or charge controller that requires 24 volts or more. To series wire the panels together you connect the positive terminal to the negative terminal of each panel until you are left with a single positive and negative connection.

Solar panels in series add up or sum the voltages produced by each individual panel, giving the total output voltage of the array as shown.

Solar Panels in Series of Same Characteristics

connecting solar panels together in series

 

In this method ALL the solar panels are of the same type and power rating. The total voltage output becomes the sum of the voltage output of each panel. Using the same three 6 volt, 3.0 amp panels as above, we can see that when they are connected together in series, the array produces 18 volts (6 + 6 + 6) at 3.0 amps, or 54 watts (volts x amps).

Now lets look at connecting solar panels in series with different nominal voltages but with identical current ratings.

Solar Panels in Series of Different Voltages

solar panels in series with different voltages

 

In this method all the solar panels are of different types and power rating but have a common current rating. When they are connected together in series, the array produces 21 volts at 3.0 amps, or 63 watts. Again the amperage remains the same at 3.0 amps but the voltage output jumps to 21 volts (5 + 7 + 9) .

Finally, lets look at connecting solar panels in series with completely different nominal voltages and different current ratings.

Solar Panels in Series of Different Currents

solar panels in series with different currents

 

In this method all the solar panels are of different types and power rating. The individual panel voltages will add together as before, but this time the amperage will be limited to the value of the lowest panel in the series string, in this case 1 amp. Then the array will produce 19 volts (3 + 7 + 9) at 1.0 amp only, or only 19 watts out of a possible 69 watts available reducing the arrays efficiency.

We can see that the solar panel rated at 9 volts, 5 amps, will only use one fifth or 20% of its maximum current potential reducing its efficiency and wasting money on the purchase of this solar panel. Connecting solar panels in series with different current ratings should only be used provisionally, as the solar panel with the lowest rated current determines the current output of the whole array.

Connecting Solar Panels in Parallel

The next method we will look at of connecting solar panels together is what’s known as “Parallel Wiring“. Connecting solar panels together in parallel is used to boost the total system current and is the reverse of the series connection. By parallel wiring panels you connect all the positive terminals together (positive to positive) and all of the negative terminals together (negative to negative) until you are left with a single positive and negative connection to attach to your regulator and batteries.

When you connect solar panels together in parallel, the total voltage output remains the same as it would for a single panel, but the output current becomes the sum of the output of each panel as shown.

Solar Panels in Parallel of Same Characteristics

connecting solar panels together in parallel

 

In this method ALL the solar panels are of the same type and power rating. Using the same three 6 volt, 3.0 amp panels as above, the total output of the panels, when connected together in parallel, the voltage output would remain the same at 6 volts, but the amperage would increase to 9.0 amps (3 + 3 + 3), or 54 watts.

But what if our newly acquired solar panels are non-identical, how will this affect the other panels. We have seen that the currents add together, so no real problem there, just as long as the panel voltages are the same and the output voltage remains constant. Lets look at connecting solar panels in parallel with different nominal voltages and different current ratings.

Solar Panels in Parallel with Different Voltages and Currents

solar panels in parallel with different voltages and currents

 

Here the parallel currents add up as before but the voltage adjusts to the lowest value, in this case 3 volts. Solar panels must have the same output voltage to be useful in parallel. If one panel has a higher voltage it will supply the load current to the degree that its output voltage drops to that of the lower voltage panel.

We can see that the solar panel rated at 9 volts, 5 amps, will only operate at a maximum voltage of 3 volts as its operation is being influenced by the smaller panel, reducing its efficiency and wasting money on the purchase of this higher power solar panel. Connecting solar panels in parallel with different voltage ratings is not recommended as the solar panel with the lowest rated voltage determines the voltage output of the whole array.

Then when connecting solar panels together in parallel it is important that they ALL have the same nominal voltage value, but it is not necessary that they have the same ampere value.

Connecting solar panels together to form bigger arrays is not all that complicated. How many series or parallel strings of panels you make up per array depends on what amount of voltage and current you are aiming for. If you are designing a 12 volt battery charging system than parallel wiring is perfect. If you are looking at a higher voltage grid connected system, than you’re probably going to want to go with a series or series-parallel combination depending on the number of solar panels you have.

But for a simple reference in regards to how to connect solar panels together in either parallel or series wiring configurations, just remember that parallel wiring = more amperes, and series wiring = more voltage, and with the right type and combination of solar panels you can power just about any electrical device you may have in your home.

For more information about Connecting Solar Panels Together in either series or parallel combinations, or to obtain more information about the different types of solar panels available, or to explore the advantages and disadvantages of using solar power in your home, then Click Here to order your copy from Amazon today and learn more about designing, wiring and installing photovoltaic solar electric systems in your home.

Some high quality solar panels you may be interested in which can be connected together and used in solar arrays.


19 Comments » for Connecting Solar Panels Together
  1. Frank Fallon says:

    Consult a specialist in your area.
    Off the cuff, I would say 2000 watts of panels might give you one KVA. It all boils down to efficiency. Panel efficiency times inverter efficiency times load efficiency and installation efficiency. Multiply it all together and you might end up with half the input as output plus further losses will occurr where inductive loads can cause a low overall power factor in the installation.

  2. Frank Fallon says:

    An interesting Hybrid Solar charger “Infini” has a high VOC (Open circuit voltage). This provides for a series circuit where cable sizes can be small and losses are very low in the higher voltage circuit. Wiring is simplified as you just plug the panels from panel one to panel 2 etc from the first to the last panel. Connect one wire to each end ( + and -) down to the Infini controller.

    The Infini controller has many modes: Grid tie, Off grid, On grid with battery backup and more. If you add all your panels watts, say Ten 250 watt panels this totals 2500 watts DC Input. The amps in a series circuit is that shown on one panel where all are identical.

    KVA is related to AC output where volts times amps = watts at unity power factor. Basically relates to the total load power factor of the whole load. If it is 0.8 power factor then a Ten KVA alternator will only deliver 8KVA, etc.

    Care is needed with electric motors. You should use capacitor run motors of high power factor and high efficiency. Motor types: PSC (capacitor run) Dual cap motors in larger sizes (Cap start, cap run) and often PSC.

  3. alanna says:

    WOW just what I was searching for. Came here by searching for connecting solar panels together

  4. M Kumar says:

    Dear Sir,
    Kindly show me a simple formula for calculating the following:
    1)How many panels are required for generating 1KVA power.
    2)Sunlight at our area is 5 hours.
    3)Backup required is 8 hours.
    4)What will be the Panel size.(Watt peak).

    Also would appreciate if you could show me a how to calculate the same in future with different capacities ..

Leave a Reply

Your email address will not be published. Required fields are marked *

*

What's the Answer *