Alternative Energy Tutorials Tag: solar cell

Solar Cell I-V Characteristic

solar cell

Solar cell I-V characteristics curves show the current and voltage characteristics of a particular photovoltaic cell, module or array in order to give a detailed description of its solar energy conversion ability and efficiency at different light intensities. Solar cell I-V characteristics curves are use to measure a cells open-circuit voltage, short-circuit current, fill factor and efficiency with the rating of a PV cell or panel depending on these parameters


Photovoltaics Turn Photons into Electrons

solar cell

Photovoltaic cells turn the photons from sunlight into electrons producing a current flow, thus photovoltaic PV cells are powered by incident sunlight and so are commonly called solar cells. Solar cells are made using silicon based semiconductor materials with different electrical properties. An n-type semiconductor material with excess negatively charged electrons is fused together with a p-type semiconductor which has an excess of positively charged holes to create a p-n junction. When a photon of light hits this p-n junction, electrons are release to form an electrical current


Photovoltaic Types

photovoltaic thin film

Photovoltaic solar cells come in many different forms with the three main types of photovoltaic cell being Monocrystalline silicon, Polycrystalline silicon and Thin Film silicon. Crystalline silicon is the most common technology used to produce photovoltaic cells representing about 90% of the market today. The conversion efficiency for a monocrystalline cell ranges between 15 to 20% with polycrystalline lower between 10 to 14%. Thin film photovoltaics are produced by printing or spraying a thin semiconductor layer of photovoltaic material onto a glass, metal or plastic foil substrate making them cheap to manufacture.